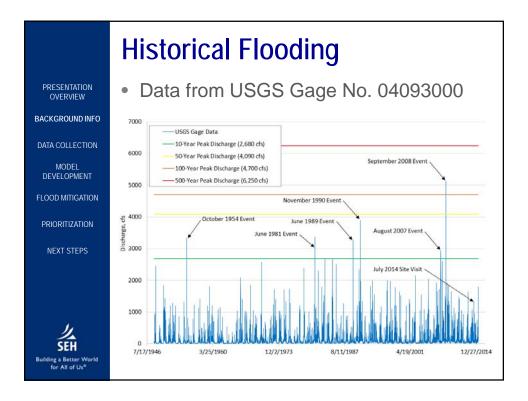
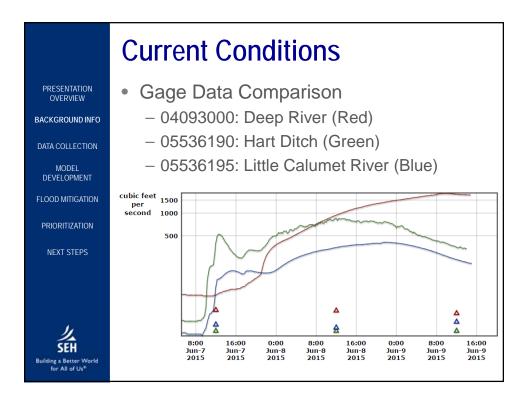
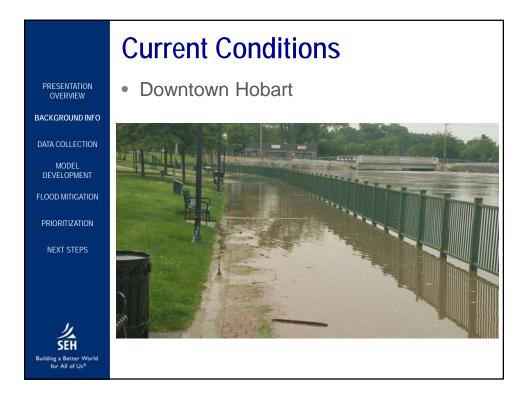
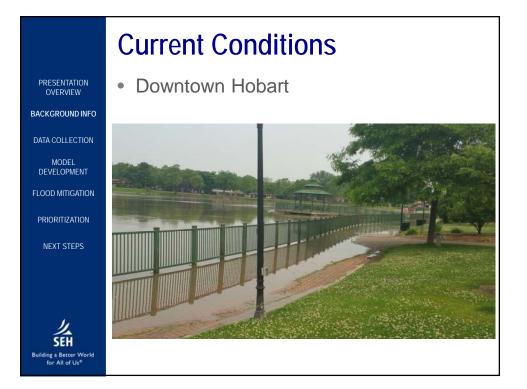


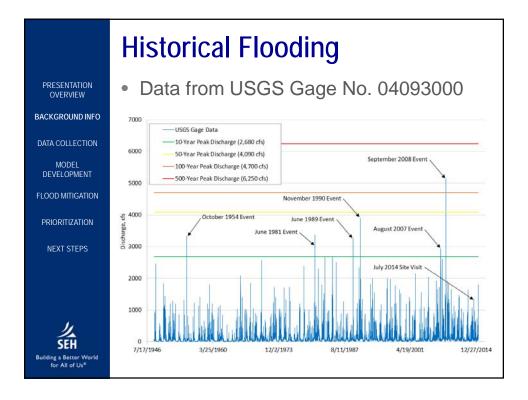
Deep River Flood Risk Management

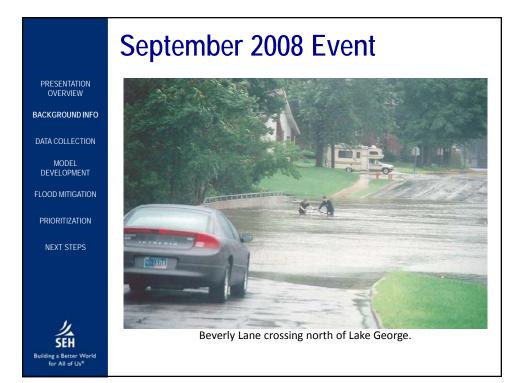

Final Presentation to LCRBDC June 10, 2015

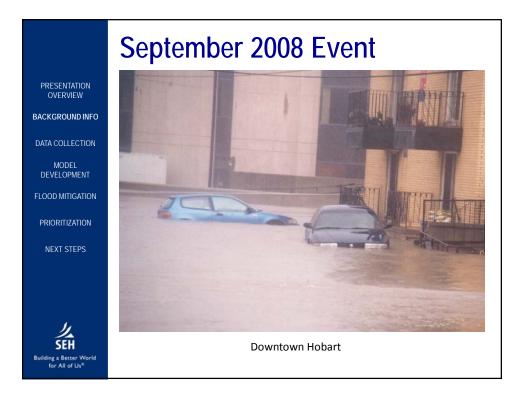



	Presentation Overview
PRESENTATION OVERVIEW BACKGROUND INFO DATA COLLECTION MODEL DEVELOPMENT	 Project Overview & Background Information Data Collection Model Development Flood Mitigation Alternatives Levee Construction Bridge Modifications
FLOOD MITIGATION PRIORITIZATION NEXT STEPS	 Lake Station Dam Modifications Bypass Tunnel Floodplain Storage Lake George Dam Modifications Brickie Bowl Flooding Lake George Sedimentation
SEH Building a Better World for All of Us [®]	 Channel Conveyance Green Infrastructure Property Acquisition Project Prioritization




	Historical Flooding
PRESENTATION OVERVIEW	 Flood of Record: September 2008
BACKGROUND INFO	 Inundated numerous buildings along Deep River, from Lake Station to Hobart
DATA COLLECTION MODEL DEVELOPMENT	 Lake George Dam sustained significant damage but has been rehabilitated.
FLOOD MITIGATION PRIORITIZATION	 This event will serve as basis for several alternatives evaluated.
NEXT STEPS	 Peak Discharge at USGS Gage = 5,280 cfs 100-year Discharge = 4,700 cfs 500-year Discharge = 6,250 cfs
SEH Building a Better World for All of Us ⁸	





Data Collection Collected & reviewed several previous reports and projects

 Collected & reviewed several previous models from:

– IDNR

OVERVIEW

BACKGROUND INFO

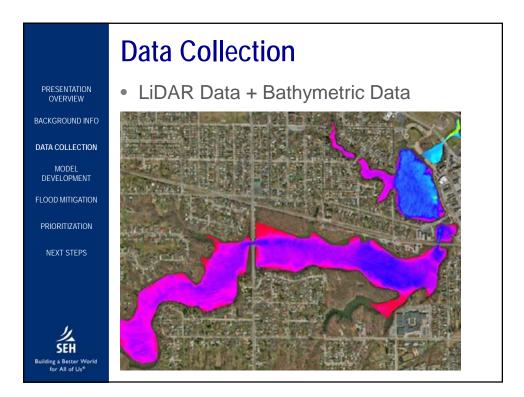
DATA COLLECTION

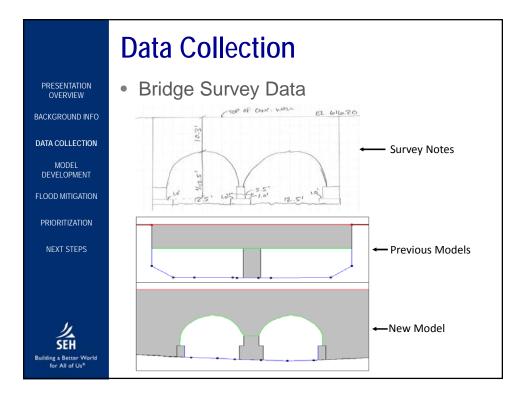
MODEL DEVELOPMENT

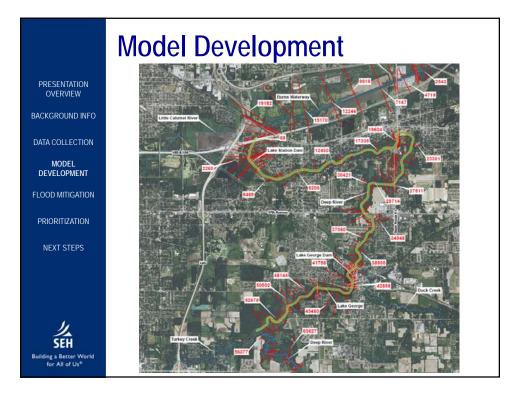
FLOOD MITIGATION

PRIORITIZATION

NEXT STEPS

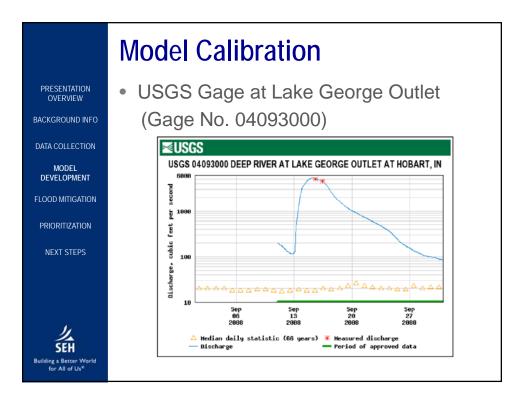

- USACE
- MWRD
 - Stantec (FEMA's Contractor for effective Flood Insurance Study)

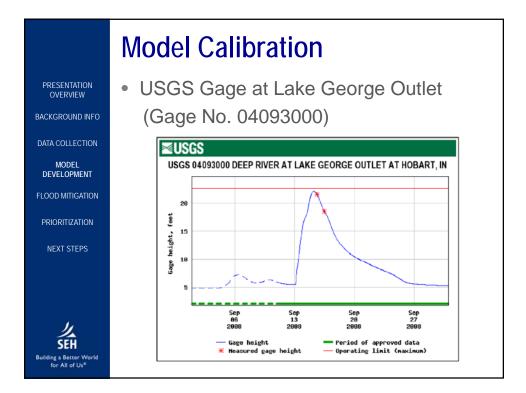

Data Collection PRESENTATION • IDNR Hydraulic Model OVERVIEW - Steady State Only BACKGROUND INFO Cross Sections are Approximate DATA COLLECTION - Outdated Bridge Modeling Methodologies MODEL DEVELOPMENT - Lake George Dam Modeled as Bridge FLOOD MITIGATION Lake Station Dam Excluded PRIORITIZATION - Does Not Include Interaction with Little Cal NEXT STEPS Regulatory Model · Results are within 0.2' of the water surface elevations published in the effective Flood **Insurance Study** SEH

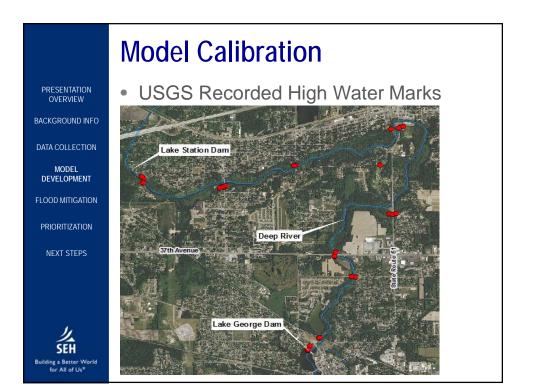

7

<section-header><section-header><section-header><text><text><text><text><text><text><text>

	Data Collection
PRESENTATION OVERVIEW	 FEMA/Stantec Hydraulic Model
BACKGROUND INFO	 Steady State Only
DATA COLLECTION	 Deep River Downstream of State Route 51
MODEL DEVELOPMENT	 Cross Sections are Approximate
FLOOD MITIGATION	 Lake Station Dam Excluded
PRIORITIZATION	 Does Not Include Interaction with Little Cal
	 MWRD Hydrologic Models
NEXT STEPS	 Several Historical Storms including September 2008 Event
	 100-year Hydrographs
SEH Building a Better World for All of Us*	 Does Not Include Interaction with Little Cal







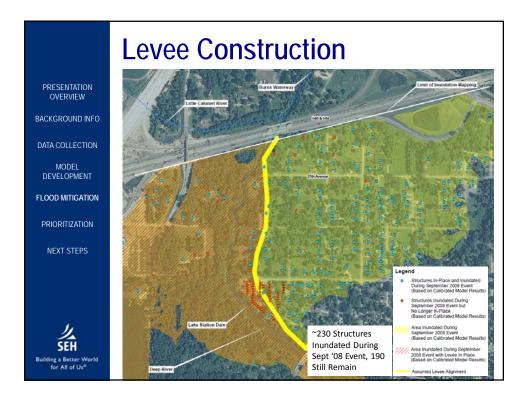
	Model Development
PRESENTATION OVERVIEW	16 River Miles
BACKGROUND INFO	– 12 Mi. Deep River
DATA COLLECTION	 – 4 Mi. Burns Waterway
MODEL DEVELOPMENT	 126 Cross Sections
FLOOD MITIGATION	– 102 on Deep River
PRIORITIZATION	 – 24 on Burns Waterway
NEXT STEPS	 24 Bridges
	– 18 on Deep River
	 – 6 on Burns Waterway
<u>ル</u> SEH	 2 Dams (Lake Station & Lake George)
Building a Better World for All of Us®	

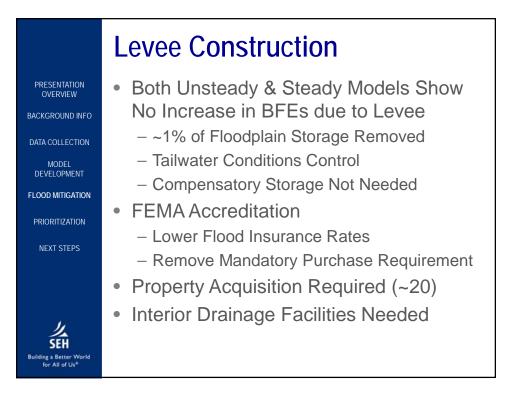
Model Development PRESENTATION Steady & Unsteady Models OVERVIEW - No new hydrology BACKGROUND INFO - Steady-state discharges from FIS DATA COLLECTION - Unsteady discharges from MWRD models MODEL DEVELOPMENT **Georeferenced Models** FLOOD MITIGATION Automated floodplain mapping PRIORITIZATION - Public education & outreach NEXT STEPS

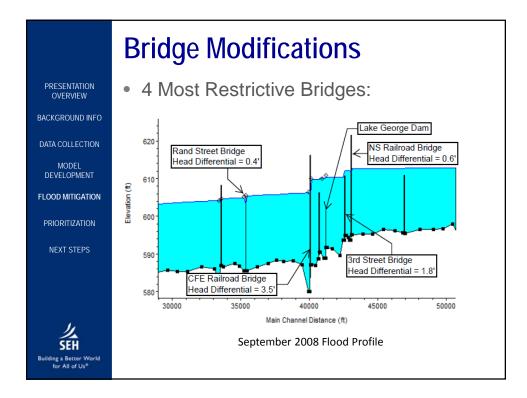
			Uncalibrated					
RESENTATION OVERVIEW		Gboerved High Wake Mark Nevaline	Model Results W.S. Elev	Difference		Calibrated Model Results W.S. Elev	Difference	
	Firer Callen	報告	(ft) 610.08	(ft) 0.87	Error/ 0.76	(ft) 610.29	(ft) 0.66	Error/ 0.44
KGROUND INFO	41380.69	10.00	010.00	0.07	0.75	010.28	0.00	0.44
	Loiss George Dem ¢1126.07	610,99	610.04	-0.04	0.00	610.15	-0.15	0.02
	Gid Ridge Reed	919499	010.04	0.04	0.00	0.0.10	0.10	0.02
A COLLECTION	40201.27	628.69	609.79	0.20	0.04	609.75	0.24	0.06
ACOLLECTION	Reiroed Bildes							
	40081.68	614	603.68	2.74	7.51	606.26	0.16	0.03
MODEL	36540.63	628.65	603.17	2.41	5.81	605.35	0.23	0.05
EVELOPMENT	Rend Groat							
	36312.00	(編約15)	602.85	2.28	5.20	601.91	0.22	0.05
	33914.94	624.65	602.69	1.96	3.84	604.63	0.02	0.00
D MITIGATION	\$7th Avenue							
	33449.21	624.11	602.54	1.57	2.46	604.2	-0.09	0.01
	27999.44	62.82	602.04	0.88	0.77	603.05	-0.13	0.02
ORITIZATION	Gais Fissia St							
RITIZATION	27610.69	都是为	601.84	0.86	0.74	602.76	-0.06	0.00
	21628.62	601.64	601.21	0.47	0.22	601.99	-0.31	0.10
	21016.65	601.46	600.92	0.53	0.28	601.5/1	-0.09	0.01
XT STEPS	State Revie 61							
	20147.48	601.42	600.87	0.55	0.30	601.33	0.09	0.01
	19734.05	601.55	600.82	0.56	0.31	601.18	0.20	0.01
	Peinen & Padastilan Sidea							
	13254.62	655.00	800.07	-0.27	0.07	600.02	-0.22	0.05
	Grand Bauleverti							
	13062.18	859.65	500.73	-0.18	0.03	599.66	-0.11	0.01
	8008,728	655.39	599.39	-0.19	0.04	599.33	-0.13	0.02
and the second	Cabala Street							
1.	Alegerianed RR							
	3094.411	665.49	595.68	-0.22	0.05	598.65	-0.19	0.04
	Liverand Reed							
SEH	3712.327	66521	598.49	-0.28	0.08	598.43	-0.22	0.05
Better World	Leha Station Com							
f Us®				Total	28.52		Total	0.99

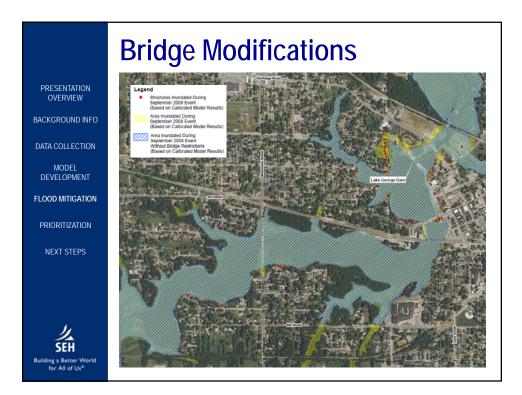
	Model Cali	bration		
PRESENTATION OVERVIEW BACKGROUND INFO	 Comparison to Effective Base Flood Elevations: 			
DATA COLLECTION	Location Along Deep River (FIS Cross Section ID)	Effective Base Flood Elevation (from FIS)	Calibrated Model Result	Difference (ft)
	Liverpool Road (D)	597.4	597.4	0.0
MODEL	Old Soo Line Railroad (E)	597.8	598.3	+0.5
DEVELOPMENT	Dekalb St/Michigan St (G)	598.1	598.9	+0.8
	Grand Blvd (J)	598.7	599.7	+1.0
FLOOD MITIGATION	26th Avenue (M)	599.9	600.6	+0.7
	State Route 51 North Crossing (N)	600.3	601.0	+0.7
PRIORITIZATION	State Route 51 South Crossing (R)	601.8	602.8	+1.0
	37th Avenue (W)	603.1	604.9	+1.8
NEXT STEPS	39th Ave/Rand (Y)	603.6	605.4	+1.8
NEXT STEPS	Chicago, Ft. Wayne & Eastern Railroad D/S (AA)	604.1	606.3	+2.2
	Chicago, Ft. Wayne & Eastern Railroad U/S	609.5	609.7	+0.2
	Old Ridge Road (AB)	609.6	609.8	+0.2
	Hobart Dam (AC)	610.0	610.0	0.0
	3rd Street (AG)	611.8	611.6	-0.2
	Norfolk Southern RR (AJ)	612.4	612.1	-0.3
<u> </u>	Wisconsin Street (AO)	612.5	612.2	-0.3
SEH Building a Better World for All of Us*				

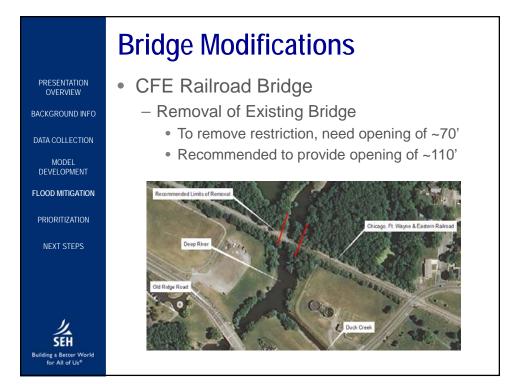
Model Calibration

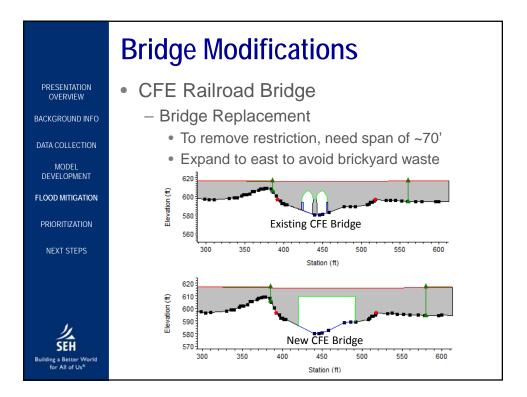

PRESENTATION OVERVIEW

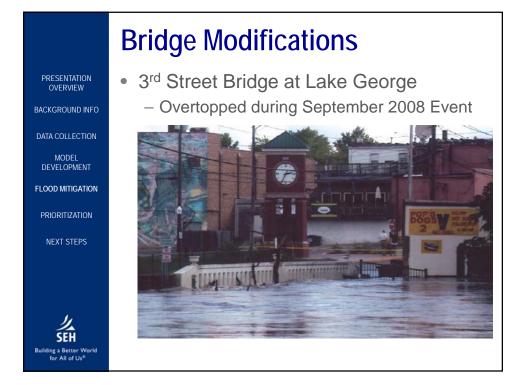

BACKGROUND INFO


 Comparison to Effective Base Flood Elevations:


	Flood Mitigation Alternatives
PRESENTATION OVERVIEW	Levee Construction
BACKGROUND INFO	 Bridge Modifications
DATA COLLECTION	 Lake Station Dam Modifications
MODEL DEVEL OPMENT	 Bypass Tunnel
FLOOD MITIGATION	 Floodplain Storage
PRIORITIZATION	 Lake George Dam Modifications
NEXT STEPS	 Brickie Bowl Flooding
	 Lake George Sediment Management
	 Channel Conveyance
1	 Green Infrastructure
SEH	 Property Acquisition
Building a Better World for All of Us®	

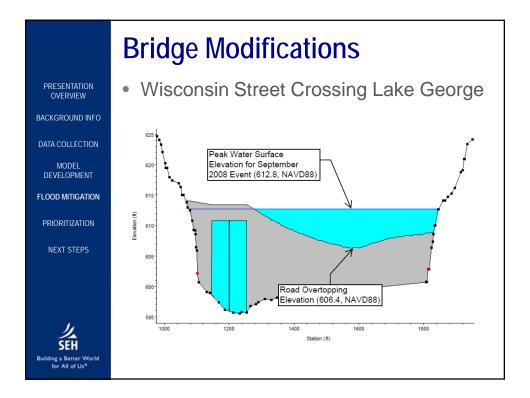






17

	Bridge Modifications
PRESENTATION OVERVIEW	 3rd Street Bridge at Lake George
BACKGROUND INFO	 Influences elevations at Wisconsin Street
DATA COLLECTION	 Elevations of Interest (NAVD 88):
MODEL DEVELOPMENT	 Normal Water Surface = 601.9 ft Bottom of Bridge Deck = 606.3 ft
FLOOD MITIGATION	 – NWL Boater Clearance of 4.4 ft
PRIORITIZATION	 Top of Bridge Deck = 610.8 ft
NEXT STEPS	 100-Year Water Surface (FIS) = 611.9 ft 1.1 ft Water Depth
	 September 2008 Water Surface = 612.1 ft – 1.2 ft Water Depth
SEH Building a Better World for All of Us*	 – 1.8 ft Head Differential



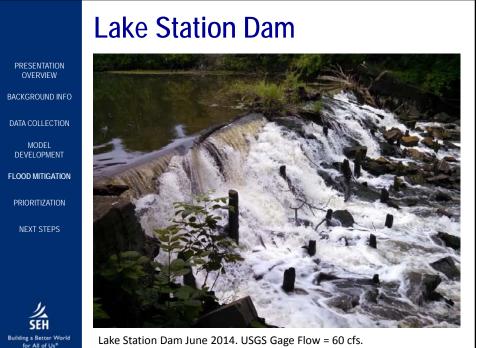
	Bridge Modifications
PRESENTATION OVERVIEW BACKGROUND INFO	 3rd Street Bridge at Lake George By eliminating restriction, peak water
DATA COLLECTION MODEL DEVELOPMENT	surface elevations upstream (in Lake George) could decrease by up to 1.8 feet for September 2008 event.
FLOOD MITIGATION PRIORITIZATION	 To eliminate restriction, bridge span must be increased from 65 feet to 125 feet.
NEXT STEPS	 New headwater elevation of 610.2, new minimum road elevation of 611.2 (at shoulder). Current road elevation is approx. 610.8 at CL.
SEH Building a Better World for All of Us*	

19

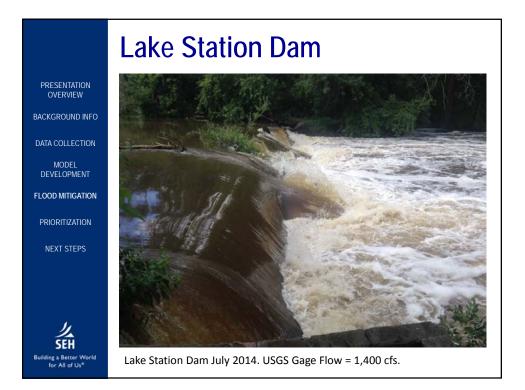
	Bridge Modifications
PRESENTATION OVERVIEW	 Wisconsin Street Crossing Lake George
BACKGROUND INFO	 Road Overtopping Elevation = 606.4 ft
DATA COLLECTION	 Peak Water Surface Elevations (FIS):
MODEL DEVELOPMENT	 10-Year = 606.6 ft (0.2 ft Water Depth) 50-Year = 610.5 ft (4.1 ft Water Depth)
FLOOD MITIGATION	• 100-Year = 612.5 ft (6.1 ft Water Depth)
PRIORITIZATION	• 500-Year = 617.4 ft (11 ft Water Depth)
NEXT STEPS	 September 2008 = 612.8 ft (6.4 ft Water Depth)
	 Bottom of Bridge Deck = 610.8 ft
SEH Building a Better World for All of Us [®]	

	Bridge Modifications
PRESENTATION OVERVIEW	Wisconsin Street Crossing Lake George
BACKGROUND INFO	 Bridge Improvement Scenario 1:
DATA COLLECTION	 If profile is raised to reduce overtopping frequency and duration, bridge deck length will
MODEL DEVELOPMENT	need to be increased.
FLOOD MITIGATION	 New road shoulder at elev. 613.2 ft (1 ft above 100-year headwater elev. of 612.2 ft)
PRIORITIZATION	 Bridge span needs to be ~340 feet long to
NEXT STEPS	prevent upstream stage increases
	 Current bridge span is 110 feet.
SEH Building a Better World for All of Us*	

	Bridge Modifications
PRESENTATION OVERVIEW BACKGROUND INFO DATA COLLECTION MODEL DEVELOPMENT FLOOD MITIGATION PRIORITIZATION NEXT STEPS	 Wisconsin Street Crossing Lake George Bridge Improvement Scenario 3: If 3rd Street and Wisconsin Street are reconstructed under same project, Downstream BFE = 610.9 (1.3' lower than effective) Upstream BFE = 611.1 (1.1' lower than effective) New minimum road elev. 612.1 (at shoulder) Increase head differential across bridge without increasing regulatory BFEs. Bridge span could be reduced to ~140 feet. Scenario 2 bridge span was ~315 feet. Current bridge span is 110 feet.
Building a Better World for All of Us®	

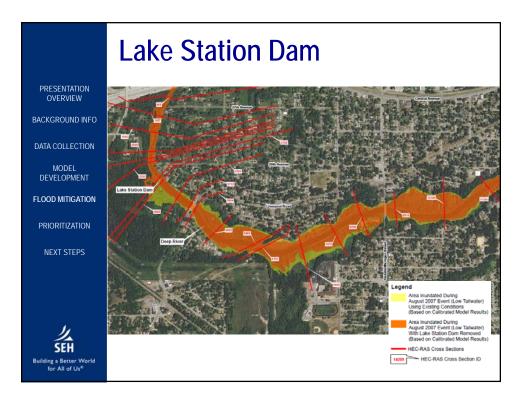

Bridge Modifications

• Summary of Scenarios:

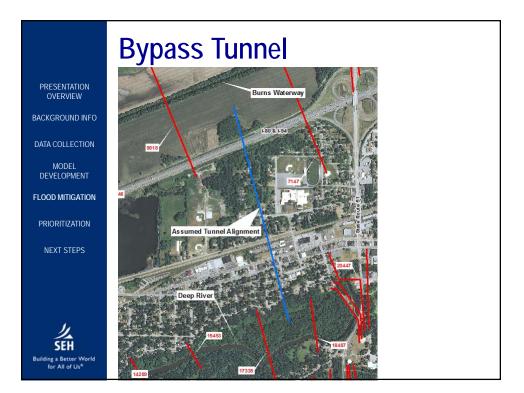

PRESENTATION OVERVIEW

BACKGROUND INI

A COLLECTION	Table 6 Wisconsin Street & 3rd Street Bridge Modeling Results				
MODEL		Existing Conditions	Scenario 1	Scenario 2	Scenario 3
EVELOPMENT	3rd Street Overtopping Elevation	610.8	610.8	611.5	611.5
OD MITIGATION	3rd Street Bridge Deck Length (ff)	65	65	125	125
RIORITIZATION	3rd Street Headwater Elevation	611.6	611.6	610.2	610.2
NEXT STEPS	Wisconsin Street Tailwater Elevation	612.2	612.2	611.0	611.0
	Wisconsin Street Headwater Elevation	612.2	612.2	611.0	611.1
	Wisconsin Street Overtopping Elevation	606.4	613.5	612.3	612.4
1	Wisconsin Street Bridge Deck Length	110	340	300	140

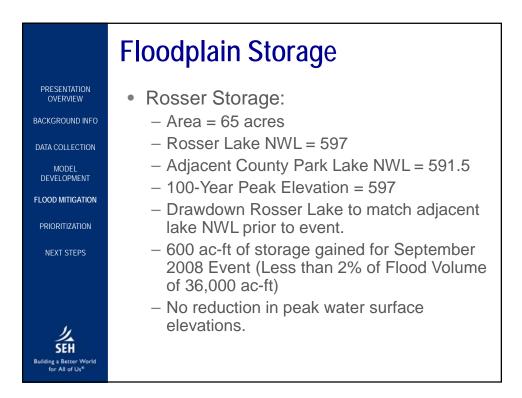


Lake Station Dam June 2014. USGS Gage Flow = 60 cfs.



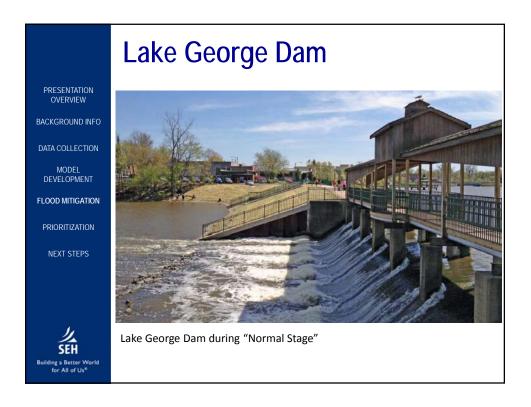
	Lake Station Dam
PRESENTATION OVERVIEW BACKGROUND INFO DATA COLLECTION MODEL DEVELOPMENT	 2 Flow Events Modeled: September 2008 Event August 2007 Event with Assumed Tailwater Condition
FLOOD MITIGATION PRIORITIZATION NEXT STEPS	 Between 10-year & 50-year frequency 2 Alternatives Considered: Lake Station Dam Removed Lake Station Dam Replaced with Dam Capable of Drawing Down prior to Event
SEH Building a Better World for All of Us [®]	

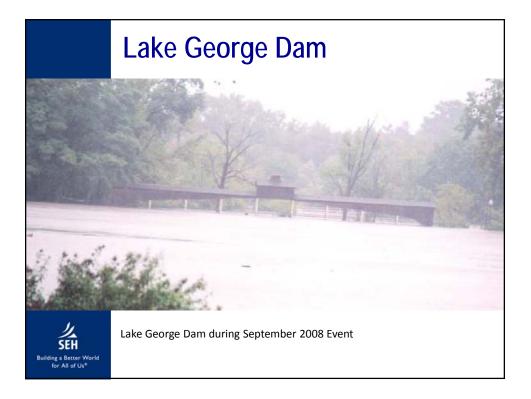
Lake Station Dam PRESENTATION OVERVIEW Lake Station Dam Removal BACKGROUND INFO - NWL above dam reduced from 590.4 to approx. 587. DATA COLLECTION MODEL DEVELOPMENT - Pool area water surface narrows from ~235 feet to ~120 feet. FLOOD MITIGATION - Max decrease of 0.1' for Sept 2008 Event PRIORITIZATION - Max decrease of 3.9' for August 2007 Event NEXT STEPS with low tailwater condition · No structures removed from inundation area due to narrow floodplain.



Lake Station Dam PRESENTATION Lake Station Dam Replacement OVERVIEW - Pool NWL of 590.4 (same as existing) BACKGROUND INFO - Drawdown to 587.8 DATA COLLECTION - Max decrease of 0.9 ft for August 2007 MODEL DEVELOPMENT Event with low tailwater condition. FLOOD MITIGATION No structures removed from inundation area due to narrow floodplain. PRIORITIZATION - No decrease shown for September 2008 NEXT STEPS Event. Existing Dam - Seepage through sheet pile wall - Sudden failure unlikely

Bypass Tunnel PRESENTATION OVERVIEW • Tunnel Length = 4,600 feet BACKGROUND INFO 2 Options Evaluated: DATA COLLECTION - Single 10-ft diameter tunnel - Three parallel 10-ft diameter tunnels DEVELOPMENT FLOOD MITIGATION • For September 2008 Event, maximum benefit of single tunnel is a decrease of PRIORITIZATION 0.2 ft; 0.6 ft for triple tunnel. NEXT STEPS No structures are removed from inundation area.





	Floodplain Storage
PRESENTATION OVERVIEW BACKGROUND INFO DATA COLLECTION MODEL DEVELOPMENT FLOOD MITIGATION PRIORITIZATION NEXT STEPS	 Indiana Street/Arizona Street Storage: Area = 75 acres Significant Excavation Needed (more than 3 Million CY assumed for this analysis) 700 ac-ft of storage gained for September 2008 Event (Less than 2% of Flood Volume) No reduction in peak water surface elevations.
SEH Building a Better World for All of Us [®]	

<section-header><section-header><section-header><text><text><text><text><text><text><text>

	Floodplain Storage
PRESENTATION OVERVIEW BACKGROUND INFO DATA COLLECTION MODEL DEVELOPMENT FLOOD MITIGATION PRIORITIZATION NEXT STEPS	 Storage Required to Make a Difference September 2008 Flood Volume = 36,000 ac-ft Storage Provided Upstream of Lake George 100-acre basin providing 1,000 ac-ft of storage results in decrease of 0.3' through Lake George 500-acre basin providing 4,000 ac-ft of storage results in decrease of 1.7' 1,000-acre basin providing 6,000 ac-ft of storage results in decrease of 3.0'
SEH Building a Batter World for All of Us*	

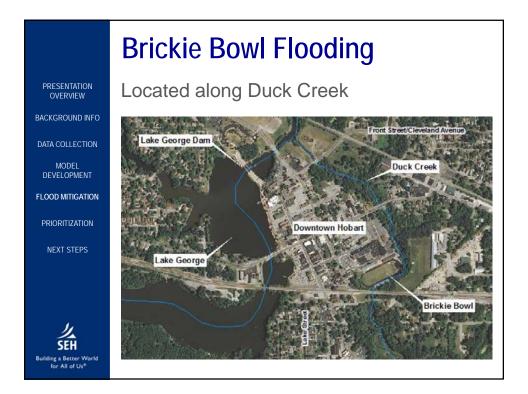
Lake George Dam

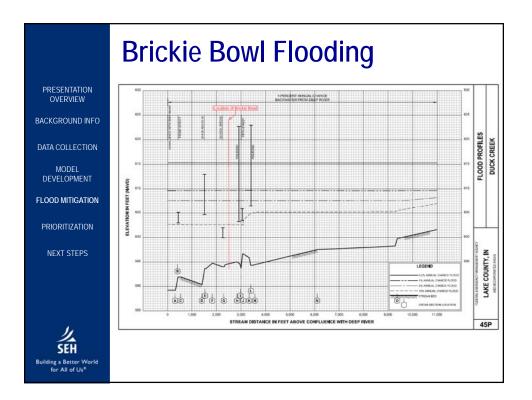
PRESENTATION OVERVIEW

BACKGROUND INFO

MODEL DEVELOPMENT

FLOOD MITIGATION


PRIORITIZATION


SEH

- Single 7' x 8' Drawdown Gate
- For Q = 200 cfs, Lake George could be drawn down 3' in 14 hours.

 If Lake is drawn down 3' prior to September 2008 event, 400 ac-ft of storage is added, peak elevations decrease by 0.1'.

	Lake George Dam
PRESENTATION OVERVIEW BACKGROUND INFO DATA COLLECTION MODEL DEVELOPMENT	 Other Considerations: 3 ft draw down results in average lake depth of 1.5 ft Lake bottom would be exposed in many areas
FLOOD MITIGATION PRIORITIZATION	 Dredging could help maintain pool Retaining walls along Lake George could be damaged by draw down
NEXT STEPS	 No advance warning system Court-established lake level of 601.93.
SEH Building a Better World for All of Us [®]	

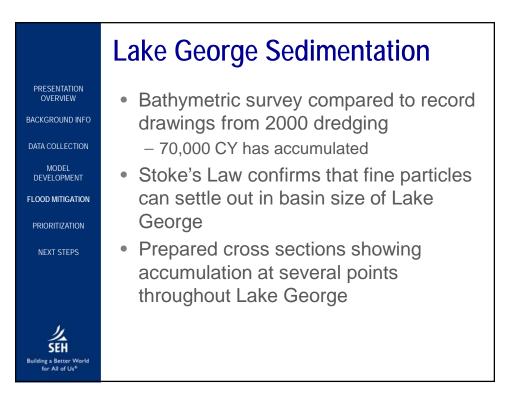
Brickie Bowl Flooding

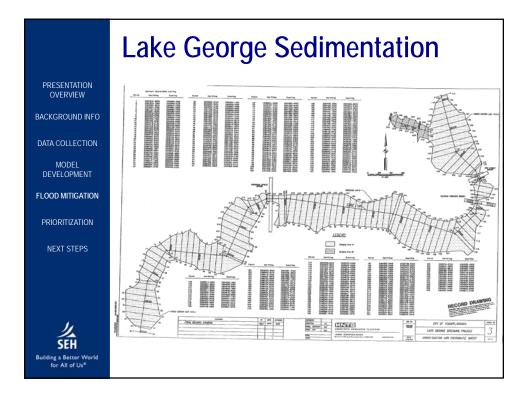
PRESENTATION OVERVIEW

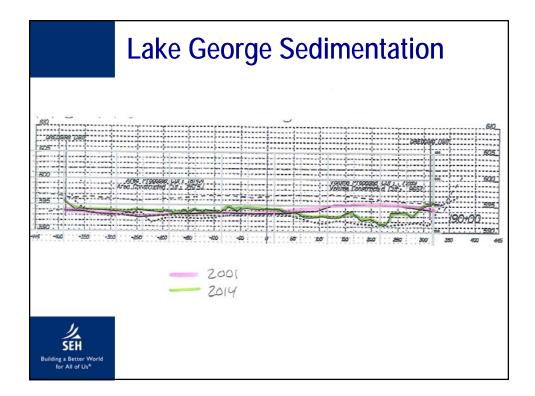
DEVELOPMENT

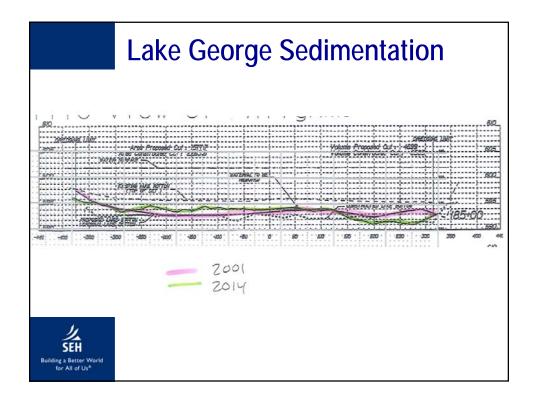
FLOOD MITIGATION

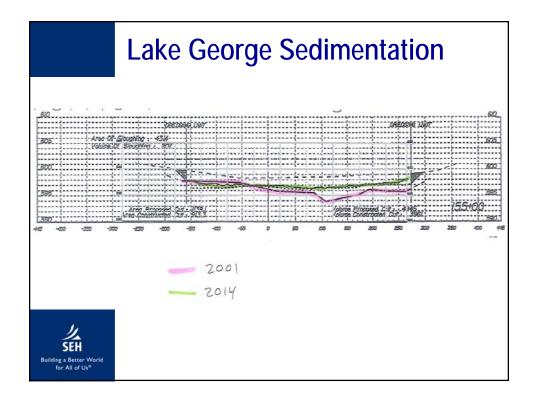
PRIORITIZATION

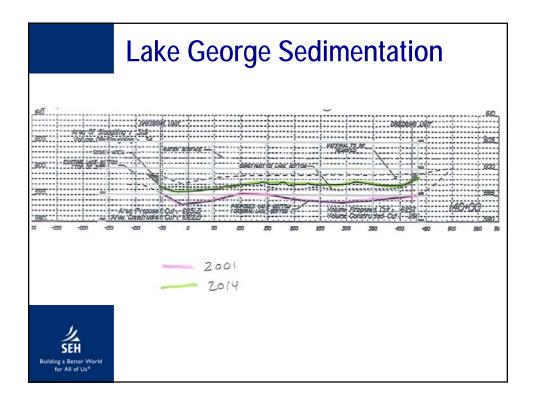

NEXT STEPS

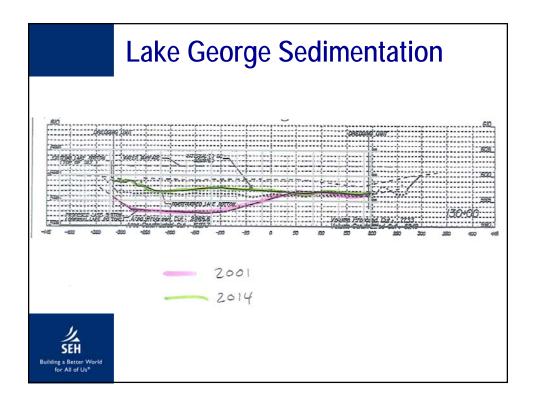

BACKGROUND INFO Deep River controls peak elevations at Brickie Bowl for all events.

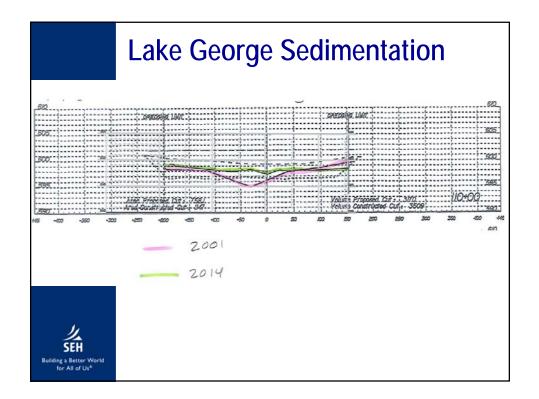

> Improving the railroad bridge could result in a peak water surface elevation decrease of 3.5 ft for the September 2008 event.

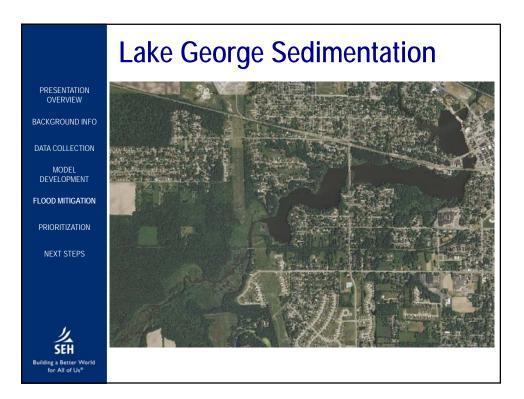

FIS profile of Duck Creek shows that

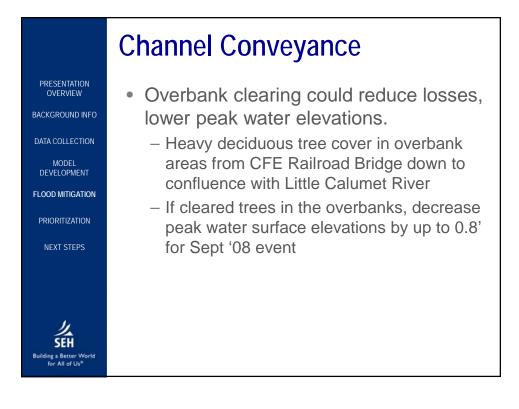

- September 2008 Peak WSE = 609.9 ft
- 100-Year Peak WSE = 609.6 ft
- Average field elevation = 603 ft

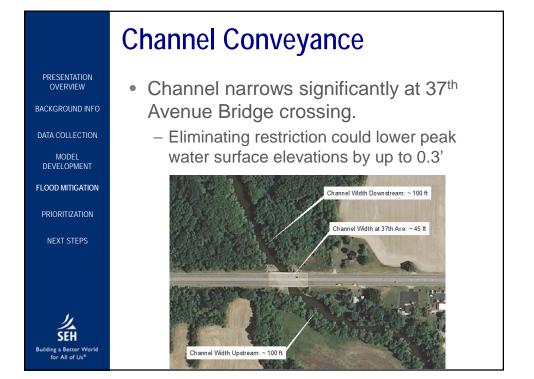












	Lake George Sedimentation
PRESENTATION OVERVIEW BACKGROUND INFO DATA COLLECTION MODEL DEVELOPMENT FLOOD MITIGATION PRIORITIZATION NEXT STEPS	 Permanent Sediment Management If the lake continues to act as a sediment trap, the decreasing pool area will reduce the sedimentation efficiency, sending more sediment downstream. May be able to restrict dredging activities to upstream of 3rd Street Recreational & Ecological Impacts of Sedimentation Current average lake depth is 4-5 ft Upstream pools were not dredged in 2000, significant plant growth evident

Green Infrastructure

PRESENTATION OVERVIEW BACKGROUND INFO

• EPA's Definition:

"Green infrastructure uses vegetation, soils, and natural processes to manage water and create healthier urban environments. At the scale of a city or county, green infrastructure refers to the patchwork of **natural areas that provides habitat, flood protection, cleaner air and cleaner water.** At the scale of a neighborhood or site, green infrastructure refers to stormwater management systems that mimic nature by soaking up and **storing water**."

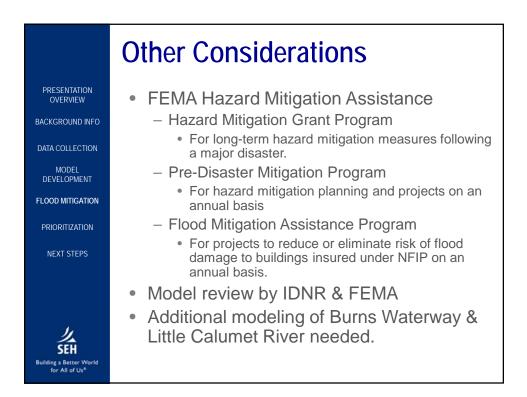
DATA COLLECTION MODEL DEVELOPMENT FLOOD MITIGATION PRIORITIZATION NEXT STEPS

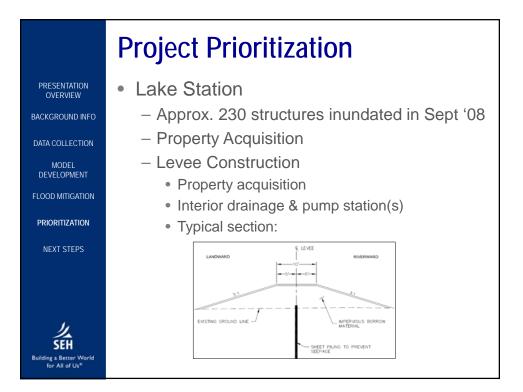
Green Infrastructure

• Can be used in lieu of or together with traditional flood risk management solutions.

- 2008 hydrograph indicates quick response of rainfall/runoff in watershed.
 - If more runoff is detained upstream, can flatten out hydrograph and dampen peak flow.
- If implemented throughout watershed, benefits increase.
- Must be evaluated in detail to ensure green infrastructure does not cause adverse impact, especially in lower reaches of watershed.

	Property Acquisition/Structure Elevation
PRESENTATION OVERVIEW	 Developing List of Properties within
BACKGROUND INFO	100-yr Inundation Area
DATA COLLECTION	 Addresses & Values
MODEL DEVELOPMENT	 Legal/Administrative Process
FLOOD MITIGATION	 Options for Reducing Risk
PRIORITIZATION	 Acquire property & demolish
NEXT STEPS	 Limited future use of property
	 Rebuild elevated structure on property
	 Detailed feasibility and cost analysis required
	 Elevate existing structure on property
」 SEH	 Relocate existing structure
Building a Better World for All of Us®	

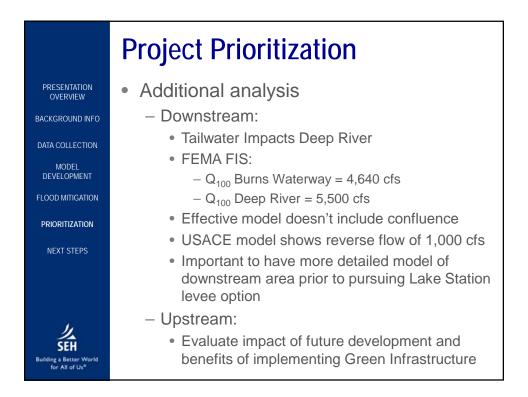

OVERVIEW BACKGROUND INFO DATA COLLECTION MODEL DEVELOPMENT FLOOD MITIGATION


PRESENTATION

NEXT STEPS


PRIORITIZATION

Project Prioritization PRESENTATION • Hobart OVERVIEW - Sediment Management in Lake George BACKGROUND INFO 70,000 CY accumulated since 2000 DATA COLLECTION Property Acquisition MODEL DEVELOPMENT - Snagging Fallen Trees FLOOD MITIGATION - CFE Railroad Bridge Improvements PRIORITIZATION - 3rd Street & Wisconsin Street Improvements NEXT STEPS Assume they are permitted together • 3rd Street: Butler Fairman and Seufert, Inc. Wisconsin Street: - Several considerations...



	Project Prioritization
PRESENTATION OVERVIEW BACKGROUND INFO	 CFE Railroad Bridge Feasibility Study – 3.5' decrease for Sept '08 event
DATA COLLECTION	 Coordination with railroad is key
MODEL DEVELOPMENT	 Lake George Dredging
	 Permanent dredging plan to maintain lake bathymetry and aesthetics
NEXT STEPS	 Snagging/Clearing Debris Prevent damage to structures and blockages
	Additional Analysis
),	 Upstream & downstream
Building a Better World for All of Us®	

	Next Steps
PRESENTATION OVERVIEW	 City of Hobart June 3 Letter
BACKGROUND INFO	 Requesting assistance with the following:
DATA COLLECTION	 Reconstruction of Wisconsin Street & Bridge and 3rd Street Bridge
MODEL DEVELOPMENT	 Permit together with Wisconsin Street to reduce
FLOOD MITIGATION	overall construction costs.
PRIORITIZATION	 Construction Sequence: » Wisconsin Street Bridge first
NEXT STEPS	» 3 rd Street Bridge second
	» Wisconsin Street Causeway third
	 Scoping Report for CFE Railroad Bridge
	 Lake George Dredging
SEH Building a Better World for All of Us [®]	